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Galilean Invariance and Magnetic Charge 
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Abstract 

The Galilean and 'dual' invariant electrodynamics with magnetic charges is formulated. 
The definition of the main feature of relativistic electromagnetism is given. Consideration 
of different aspects of Galilean electromagnetism with magnetic charges is presented. It 
is shown in particular that the conclusion of Bacry & Kubar-Andre (1973) that the 
existence of the magnetic monopole is incompatible with Galilean invariance in general 
appears to be incorrect. 

. 

The Maxwell equat ions  and electromagnet ic  force for the system of  dual 
charged particles (particles endowed wi th  b o t h  electric (q) and magnet ic  (g) 
charges) in MKSA uni ts  are: 

OE 
V x  H = e0 ~-~ + jq ,  V . E  = pq/eo 

OH 
V x E = - ~ o  ~ - Jg, V .  H = Pglt_to 

(1.1) 

F = f dar{pqE(r) + pgH(r) + ~oJq x H(r) - eojg x E(r)} (1.2) 

There jq (jg) is the densi ty of  electric (magnet ic)  current ,  pq (pg) is the 
density of  electric (magnet ic)  charge, (cp, j )  is a current  four-vector,  jq = 

£iJqi, Jg = £iJgi, Oq = ~iPqi, Pg = £i Pgi and subscript (i) indicates a dual 
charged particles with charges qi and gi, and eo/a o ( two constants)  are defined 
in the usual way. 
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The Maxwell equations (1.1) can be solved by means of two independent 
potentials (c¢, A) and (cdp, B). 

~A 
E = - V ~ -  3---Z-- V x B = E q + E g  

~B 
/.toll = Vx A - V ~  - ~-  = (Hq + Hg)/~ o (1.3) 

where 

OA 
Eq = - V ~  - Ot Eg = -- V x B, /~oI-Iq = V x A, 

~B 
uong : - v ~ -  ~-T 

and subscripts 'q', 'g' of the fields E, H indicate the type of source that produce 
these fields. 

The system of equations (1.1) falls, in this case, into two systems of 
equations: 

OEq +. V. Eq = pq/e 0 Vx Hq=eo ~--7 Jq' 

V x E q = - P °  3t ' V'Hq=O 
(1.4) 

and 

v× ng:~o-57, v.E~ : o  

Vx Eg = -/~o -~-  --Jg, v. 8 s = pg/~o 
(1.5) 

As has been shown (Le Bellac & Levy-Leblond, 1973; Penfield & Haus, 
1967) there exist two different Galilean limits of electrodynamics: the 'electric' 
and 'magnetic' limit. These limits are based on the following conditions: 
(a) t i p  t >> [j [ so ]E [ >> C~Uol H I; (b) c lp I ~ Ij I so [E ] ,~ Cttol H ], respectively. 

For the dual charged particles 'electric' limit corresponds to realisation of 
the following conditions: 

clepq[>).lejqt, ]eEql>~cf.toleHq] 

elepgl>> lejg[, ]eEgl~etto]eHg] (1.6) 
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The Maxwell equations and Lorentz force have the following form in this 
limit: 

3eEq 
v x  eH=eo--~-t +ejq, V. eE =epq/e 0 

aeng 
- -  e • V x  eE = - # o  Ot - Jg' V'eH=epg/t'to 

(t .7) 

ev = ~. d3r(epqeE(r) +epg ell(r) +/joejq x erie(r) - e(fjg x eEq(r)} (1.8) 

and they are invariants under the following Galilean transformations of  fields 
and sources: 

e E ' =  eE + #oV x eHg, el l '  = e H  - Coy x eEq 
e , = e-, (1.9) Oq(g) epq(g), Jq(g) =Jq(g) v.epq(g) 

and Galilean transformation of the spatio-temporal gradient: 

1 3 1 3  1 
- + - - v . V  ( 1 . 1 0 )  

c 3t '  c 0t e 
V'  --V 

Superscript e indicates the 'electric' limit to which correspond equations 
(1.7) and (1.8) and transformations (1.9), The field vectors eE, eH in (I .7)- 
(1.9) are a superposition of the fields eEq, eEg and eHq, eHg. The transforma- 
tions (1.9) can be derived from the usual Lorentz transformations of  fields and 
sources taking into account condition (1.6) and the limit c-+ oo. First we get 
the Galilean limit of  equations (1.4) and (1.5) and then make the transition to 
system (1.7). 

In the 'magnetic '  limit (superscript 'm ' )  we have: 

c lmpq[~  Imjql '  {mEq[~Cl~o[mHq] (1.11) 

ctmpgl'~ lrnjgt, ImEgl>~ ct.tolmHgt 

In this limit Galilean transformations of  fields and sources have the following 
form: 

m t7 
mE' : mE + NO v x mHq, H' : m H -  eoV x meg 

/ T /  t pq(g) = mpq(g) _ eOUO v mjq(g), mjq(e ) = mjq(g) (1 .12)  

The Maxwell equations and the Lorentz force in this limit have the form: 

OmEg 
v x m H  = e  O - 0 t  + rnjq, V. mE =mpq/e 0 

(1.13) 

V x mE = --t"10 ~t -- Jg' V 'mH = mpg/ld'o 
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m F = f d3r(mpq, mEg(r ) + mpg. mHq(r ) +/~omjq x mH(r) - e2Jg x mE(r)} 

(1.14) 

While proving the Galilean invariance of (1.14) we made use of  (t  .13) and 
of  the fact that  the surface integral of  the term m Eq x m I-Ig (or m Eg x m Hq) 
is vanishing. In the 'magnetic '  limit, as can be seen from (1.13), moq(g ) and 
mjqfg) do not obey the continuity equation in contrast to the 'electric' limit. 

I f  we put jg  = 0, pg = 0 and exclude from (1.7) to (1.9) and (1.12) to (1.14) 
the field vectors with subscript 'g '  and omit  subscript 'q '  o f  the fields E, t t  we 
get 'electric' and 'magnetic '  limits of  electrodynamics in Galilean invariant 
form with the presence of only electric sources. 

The Maxwell equations and the Lorentz force in both limits are invariants 
under the following 'dual '  transformations. 

eoaEq ~ eoClEq cos 0 +/~oaHg sin 0, poaHq -+/lodHq cos 0 -- eoaEg sin 0 

eoaEg ~ e0aEg cos 0 +/~oaFIq sin 0, /J0attg ~ / loa I~  cos 0 - eoaEq sin 0 
(1.1s) 

and corresponding transformations of  the sources Po, P¢ and jq,jg. Super- 
script 'd '  in (1.15) indicates the 'electric' 'e' or 'magnetic '  'm '  limits. 

We do not intend to discuss here the physical peculiarities of  both  Gatilean 
formulationst  of  electrodynamics. The reason is that for the case of  electric 
sources alone it was perfectly done by Le Bellac & Levy-Leblond (1973). 
Taldng into consideration the 'dual '  symmetry  the discussion for the magnetic 
sources immediately follows. We only note that  the main feature of  Galilean 
formulations is that the force between the current and moving charge in the 
'electric' limit and the static force between the charges in the 'magnetic'  limit 
is absent. 

2. 

During the investigation of Galilean limits of  electrodynamics with electric 
sources alone it turned out, rather unexpectedly, that we cannot give the 
precise meaning of what we refer to in relativistic aspects of electromagnetism 
(Le Bellac & Levy-Leblond, 1973). But the situation is different, as will be 
seen, if  we take into account magnetic sources. In fact as can be seen from 
the field equations and equations of  motion in both Galilean limits of  electro- 
dynamics, the electric and magnetic fields produced by electric and by magnetic 
sources have a different physical nature. ~ The introduction in Galilean electro- 
magnetism (in both limits) of  the following principle- i t  is impossible to deter- 
mine experimentally the difference between electric and magnetic fields of  

t Considering the definition (1.3) we can define the fields E, H in both limits through 
the potentials A, B, O, ~ and discuss the Lagrange formulation of the theory on this basis. 

For example, in the "electric" limit there exists a magnetic fieM produced by 
electric sources. But this field, contrary to the magnetic field of magnetic sources, has 
no effect on the electric charge in motion. 
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electric sources and the corresponding fields of magnetic sources-indicates 
the necessity of transition to the electrodynamics of Maxwell-Lorentz, where 
the fields Eq, Eg and Hq, Hg are equivalent in their physical appearance. But 
the above-mentioned principle has never been formulated before in a manifest 
form in electrodynamics, though it essentially reflects the relativistic aspects 
of Maxwell electromagnetism. 

From the formal point of view, the correctness of this principle demands 
that the equation of motion and field equations must be invariant under the 
following substitutions (not necessarily simultaneous): 

Eq nq ng 

It can be satisfied only in the electrodynamics of Maxwell-Lorentz, and 
the transition of Galilean electromagnetism into Maxwell electromagnetism 
can be achieved by omitting the subscripts 'q', 'g' of the field vectors. If one 
omits the subscripts 'q' and 'g' of the fields Eq(g), ttq~g) (i.e. no distinction made 
about these fields), we pass from the Galilean transformations of fields (1.9) 
and (1.12) to the following transformations: 

E' = E  +#oV x H 

H' = H -  eoVX E (2.1) 

These transformations are usually used in the quasi-relativistic considera- 
tion of electromagnetic phenomena. As was indicated by Le Bellac & Levy- 
Leblond (t973), and as can be seen from our derivation of the above-mentioned 
transformations, they do not correspond to the correct Galilean transformation 
of the fields. On the basis of the above-mentioned it was stated (Le Bellac & 
Levy-Leblond (1973)) that these transformations have no precise physical 
meaning and their use should be avoided. But from our investigation the 
following possibility of interpretation of these transformations evolves the 
consideration of (2.1) with the Maxwell equations (1.3) is a relativistic 
modification (e.g. taking into account the effect in the first order by v/c) of 
Galilean electromagnetism. 

If we omit subscripts 'q', 'g' of field vectors the transformations (1.15) are 
the usual dual transformations in electrodynamics. Dual transformations of 
the field vectors E, H can be induced by two types of dual transformations 
for their components Eq, Eg and Hq, Hg. There can be transformations between 
electric and magnetic fields of one type (e.g. only with subscripts 'q' or 'g') 
or transformations of the type (1.15). Only the first type of transformations 
expresses the symmetry between electric and magnetic fields that are inherent 
in relativistic electromagnetism. The latter type of transformation reflects, as 
one can see, the symmetry of Galilean electromagnetism. 

Supposing that electrodynamics is first formulated as Gatilean invariant 
theory, the formulated principle above might and does serve as the basic for 
the transition to the relativistic (Maxwell-Lorentz) consideration of electro- 
magnetism. This approach can be realised without the introduction of a new 
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particle-the Dirac monopole.t As has been stated, the Maxwell-Lorentz 
electrodynamics can be formulated in dual symmetrical form whilst con- 
sidering charged particles as dual charged particles under the condition of 
universality of ratio of their charges g/q (see, for example, Schwinger, 1966; 
Strazhev, 1972). In this case one can remember an ingenious paper of Hertz 
(1884). Hertz, on the basis of introducing the principle of unity of  all physical 
forces in electromagnetic phenomena and simultaneous introduction of 
magnetic sources, passed from the equations of  electrodynamics of  Weber- 
Neuman (theory of action at distance) to the Maxwell equations. The analysis 
of this work shows that the Hertz derivation can be understood as the intro- 
duction into electrodynamics of the principle which we have already formu- 
lated above. And at this stage the results of our work might be considered 
as the reinterpretation of the Hertz classical work on the basis of Galilean 
electrodynamics. 

° 

Consider the motion of a dual charged particle with charges q 1, gl in the 
field of  a particle with charges q2, g2- In the 'electric' limit one has the 
following equation: 

dvl 
m I - ~ = q l E 2  +glH2+poJqlxHg2 -eoJgxEq~ (3.1a) 

In the rest system of particles 2 at time t one finds: 

H '  - g2r E' - q2r 
g~ 47rpo r3 ' q=- 47reor3 • 

If particle 2 has the speed v2, transformation formula (1.9) provides us with 
fields measured in the laboratory 

E2_ q2r g 2 v z x r  H' 
41re°r 3 47rr 3 , Hg= g2 

H _ g2r -~qzv~xr =E' 
2 - 4 rrpo r3 47rr 3 , E% q~ 

and there is the following Galilean invariant equation of motion: 

dVl [q lq2 + g lg__.~2] r_.r__ (q lg2 - q2gl)(Vl v2) x r 
m 1 - ~ -  = / \ eo Po / ] 47rr 3 -t 47rr 3 (3.1 b) 

The equation of motion of particle 2 in the field produced by particle 1 
can be readily obtained from (3.1b) (one must replace 1 by 2 and r by - r )  

For a general account of theory of magnetic monopole, see the review article by 
St~azhev & Tomilchik (1973), where references to the original literature will be found. 
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dv2 -[qlq'2+gtg2~t " r (q lg2"q2gl ) (V2- -Vl )Xr  
m2 -~-  = \ eo - -~0]  4-~ra * 4 rrr3 (3.1c) 

And, as can be seen, the condition 

dv I dv2 
ml ~ + m 2 7 - = 0  

that comes out to require the validity of Newton's third law is satisfied 
immediately. 

An equation of the form (3.1b, c) was investigated by some authors (see, 
for example, Carter & Cohen, 1973) in the case of the theory of the magnetic 
monopole in non-relativistic approximation. It was stated there that one has 
no Galilean approach for the derivation of these equations, based on field 
theory'. But, as we see, this approach does exist. 

In the 'magnetic' limit one has 

7. mjq = v. mjg=O 

SO it is not possible to discuss in that case the motion of charged particles 
without supplementary assumptions. This question will be discussed in Section 
4. But in this case one can state that the existence of the magnetic monopole 
is compatible with Galilean invariance. We note that the discussion of the 
motion of charged particles is the most appropriate in the 'electric' limit. 

4° 

We now consider the case when for electric sources and their fields use 
of the 'magnetic' limit is made and for magnetic sources and their fields use 
of the 'electric' limit is made. Introducing the definition: 

= ~Eg + mEq 
~I = eHg + mHq 

one can formulate the Maxwell equations for field vectors E, H with the help 
of equations for eEg, ~Hg, mEq, mHq in corresponding limits. So one has 

V x H= mjq V.E = mpq/e 0 

am 
V x E = -[10 ~ - ejg, V. ft = epg/lao (4.1) 

From (1.9) and (1.12) the Galflean transformations of fields E, I2I can be 
derived: 

i~' = i¢ + . o r  × f~ 
~I' = i~ (4 .2 )  

The s o u r c e s  mjq, mpq, ejg, epg are transformed in accordance with (1.9) 
and (1.1 2). The Maxwell equations (4.1) are invariants under transformations 
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(1.10), (4.2) and Galilean transformations of sources. The Galilean invariant 
expression for force has in this mixture limit the following form: 

= f d3r{epg~I(r) + #omjq x ~I(r)) (4.3) 

For the magnetic sources, but not for the electric sources, the continuity 
equation is held in this mixture limit. We must suppose that the vector density 
mjq is a source for magnetic fields, a source which has nothing to do with 
electric charges (cf. Bacry & Kubar-Andre, 1973). In this case an electric 
charge in motion cannot produce a magnetic field; we can consider, simul- 
taneously, two kinds of s o u r c e s :  m,oq, mjq a n d  epq, ejq. 

The Ga!itean invariant expression of force has in this case the form: 

~, = f d3r{epg[.i(r) + ~njq x [-I(r) + l~(~jq X ~l(r) + epq. E ( r ) }  (4.4) 

We note here that in accordance with the above-mentioned assumption the 
term eog. eHq in (4.4) must be dropped. Without this term one cannot include 
the term ejg x eF.q in (4.4) because the term is not Galilean invariant when alone. 
This circumstance is very important in the following work. It would be logical, 
of course, to formulate the Maxwell equations and Galitean transformations 
for the fields I;I,'E, where 'E = E + e~q, and introduce in equation 

V.E = mpqleO 

two types of sources of an electric field: 

V .  'E  = (mpq + epq)/eO 

Then in the expression for force one should take, instead of the term eOqF,, 
the term epq,~. But this modification has no principal value for the following 
discussion and for simplicity our attention will be concentrated on equations 
(4.1) and (4.4). If one wants to consider the mutual interaction of dual 
charged particles then in (4.4) the term/-tomjq x I7I ought to be omitted. The 
equations (4.1) and (4.4) are the basis of the work of Bacry & Kubar-Andre 
(1973). For the case of interaction of two dual charged particles we have (in 
line of reasoning with Section 3): 

dv, _ (q lq~ + gig21 ___L_ r ( v , -  v2) x r  
m, - ~ -  ~ -~o  --~oJ 47rr3 + q'g2 4rrr 3 

__ glg2] _r__ r (v2 -- vl) x r dr2 _ (qlq_____~; + glq2 
m 2 - - ~ -  \ eo go ] 4rrr3 -- 47rr3 

(4.5) 

and the validity of Newton's third law is required: 

glq2 +g2ql = 0 (4.6) 
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So from the condition (4.6), as was shown by Bacry& Kubar-Andre (1973), 
it follows that in Galilean invariant theory there is no place for dual charged 
particles. This conclusion can also be stated in the case where electric and 
magnetic charges exist separately. The reason for these conclusions is made very 
clear in our approach. For the case of dual charged particles this conclusion is 
caused by the application of two mutually excluding physical conditions 
(1.6) and (1.11) to the same particle. Of course, one can formulate Galilean 
theory on the basis of uniting two Galilean limits for every type of source. 
But in this case, as was shown by Le Bellac & Levy-Lebbond (1973), the 
fulfilment of Newton's third taw is not required. This means that this law is 
consistent with Galilean invariance but is not obligatory. 

The approach of Bacry & Kubar-Andre (1973) can, in principle, be used in 
the case of the separate existence of electric and magnetic charges, But from 
the general point of view this approach should be rejected. As was noted by 
Le Bellac & Levy-Leblond (1973), the use of the limiting procedure c -+ oo in 
the Maxwell equations, formulated in the system of units including the velocity 
of light in their definition (CGSE or CGSM), is very ambiguous. 

The results of the work of Bacry and Kubar-Andre arise from the use of 
system of units CGSM which is not appropriate for deriving the Galilean 
limits of electrodynamics of dual charged particles. In the last section, Section 
IV of their work an analysis of the theory is given which comes close to the 
initial position of our work. But the principal difference lies in the fact that 
in our approach the restrictions (1.6) and (1.11) on the fields are formulated 
for every type of field Eq, Eg, Hq, Hg. If  we do not take into account the 
differencet between the fields Eq, Hq and Eg, Hg then the conditions (1.6) 
and (1.t 1) for the fields are not self-consistent, as was in fact stated by the 
above-mentioned authors. 

. 

It may seem somewhat strange that the constants eo,/1o appear in the 
electric and magnetic limits simultaneously. It is known that in the MKSA 
type system these constants are related through the formula eo/~o = t/c 2. And 
if we can measure the quantities eo and/Jo simultaneously, it means that in 
principle we can measure the velocity of light. But this possibility is contrary 
to our definition of Galilean theory. 

But this time it can be clearly seen that the wave equations there have 
the form (p = 0, j = 0) 

v2~=o (S.l) 
where ~ ' ~  (E, H) and E, H are the vectors of electric or magnetic fields in the 
corresponding limits. In equation (5.1) the term eo~o(3ZF/3t2) is absent and 
the factor eo/J o cannot be compared with the 1/c 2 factor. This fact can be 
explained in the following way. The relation between eo and/1o in the electro- 

"~ We have already seen that  consideration o f  fields Eq, Eg and Hq, Hg on equal 
terms is a feature of Maxwell electrodynamics but  not  Galilean electromagnetism. 
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dynamics of  Maxwell can be stated only on the basis of knowing the laws of 
Kulon, Bio-Savar and the equation of continuity for the sources. But none of 
the Galilean limits of electrodynamics has these laws and satisfies the equation 
of continuity simultaneously. 

The introduction of interaction between electric and magnetic sources 
does not change the whole situation. The reason is that we introduce a new 
unit of dimension: the dimension of magnetic charge (G). From this point 
of  view it is more logical, of  course, to express the Maxwell equations in the 
system of five units: Cohn system (Cohn, 1900), Sommerfeld (1967) or 
MKSQG system of units. The Maxwell equations have the following form in 
the Cohn system of units. 

, ~ E  
P V x  H =eo -~  +jq, V.E=pq/eO 

, ~ H  
r V x E  = -tao ~ - - -  jg, V.H=pg/=I~o (5.2) 

Here I ~ is a new absolute constant with dimension [Y] = Q G  -1 m I s e k  - 1  and 
t 

between l?, e~, ~Uo and c the following relation is stated 

rE;v;  = 1/?  

If  one puts P equal to 1 then one can make the transition to the MKSQ 
system. But this includes the idea that the static interaction between magnetic 
charges can be described as the interaction of two permanent magnets (on the 
basis of electric sources) under appropriate conditions. But this possibility 
cannot be realised in both Galilean limits because, in this case, it means the 
physical equivalence of magnetic fields I-lq and Hg. From this consideration it 
becomes clear that the simultaneous presence of Go and ~o in the equations of 
both Galilean limits is innocuous and does not indicate the possibility of the 
definition of velocity of light. 

Another way of describing the situation involves the idea that one can 
measure the fields Eq, Eg and Hq, Hg, both limits in different units. Taking 
into consideration the last remark, one can easily see the method of obtaining 
the system of equations (1.7) and (1.8) with the help of the limiting procedure 
c -+ oo in the Maxwell equations. In this case, for example, the 'electric' limit 
can be obtained by taking equations (1.4) in the CGSE system and equations 
(1.5) in the CGSM system. In general the use of the Cohn system of units for 
the investigation of Galilean limits of  electrodynamics with magnetic charges 
is, in principle, preferable. 
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